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Abstract We prove that the number of entangled clusters with N edges in the simple cu-
bic lattice grows exponentially in N . This answers an open question posed by Grimmett
and Holroyd (Proc. Lond. Math. Soc. 81:485–512, 2000). Our result has immediate impli-
cations for entanglement percolation: we obtain an improved rigorous lower bound on the
critical probability, and we prove that the radius of the entangled component of the origin
has exponentially decaying tail when p is small.

Keywords Entanglement percolation · Entangled cluster · Lattice animal · Polymer ·
Linking · Critical probability

1 Introduction

Topological entanglements play a subtle but important role in the statistical mechanics of
macromolecules. Experiments show that the synthesis of ring polymers in solution can re-
sult in interlocked sets of rings, called catenanes (e.g. [30]). Entanglements influence the
elasticity properties of polymer networks [6, 26]. Theorists have proposed the existence
of large collections of mutually interlinked polymer rings, called Olympic ring networks,
which could have unusual physical properties [4, 29]. See [27] for surveys on these and
other aspects of molecular topology.

Polymers in solution can form very large networks, typically either by polymerization
of monomers with functionality of more than two (creating branched polymers) or else by
cross-linking between linear polymers (e.g. [3]). The formation of an essentially infinite
network (a gel) is often modeled on the lattice by percolation (see below). But it is also pos-
sible for large networks to form by the physical (topological) interlinking of many smaller
branched polymers that contain cycles [27].
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The purpose of this paper is to answer rigorously some basic questions about large entan-
gled clusters on the simple cubic lattice, in terms of understanding both their entropy (i.e.,
how many are there?) and the entanglement percolation/gelation model. Everything in this
paper takes place in three dimensions.

To introduce the problems mathematically, consider bond percolation in the simple cubic
lattice. That is, for a given probability p, each edge of the lattice is independently declared
to be either “open” (with probability p) or “closed” (with probability 1 − p). It is well
known (see [9] for a comprehensive treatment of percolation) that the lattice has a critical
probability pc , strictly between 0 and 1, such that (with probability 1) the subgraph of open
edges has a unique infinite connected component if p > pc and has no infinite connected
component if p < pc . But when p is just a bit less than pc , is it possible that infinitely
many finite components link up with one another to form an “infinite entangled graph”?
Intuitively, a subgraph of the simple cubic lattice is entangled if it is impossible to deform
space continuously so that part (but not all) of the subgraph lies inside a ball (and none of
the deformed subgraph touches the surface of the ball). Numerical investigations by [17]
indicated that there is an “entanglement threshold” pe which is less than pc by about 1.8 ×
10−7. However, Kantor and Hassold only looked for a special subclass of entangled graphs,
namely those that had two components that touched opposite faces of a large finite box.
Hence, their estimate may be best viewed as a lower bound for pc − pe .

The paper is organized as follows. Section 1.1 describes previous mathematical progress
on this topic, including a brief discussion of the definition of pe . It also presents our re-
sults, including our main theorem, which says that the number (up to translation) of clus-
ters with N edges grows exponentially in N . Section 1.2 presents the intuition behind our
main theorem. Section 1.3 describes some related models with different behaviours from
ours. Section 2 establishes the terminology and notation that we use throughout the paper.
Section 3 introduces the concept of block-cluster. Whereas a cluster can be viewed as a col-
lection of edges and vertices, a block-cluster is a collection of edges, vertices, and “boxes”
in R3. Section 4 defines a transformation on clusters that puts boxes around the cycles of
the clusters. We shall be using the intersection of a (connected) component with the box
of another component as a surrogate for entanglement of components. Section 5 presents
our main technical result: we show that it is possible to recursively add a controlled number
of edges to an entangled cluster so as to join up all the connected components. Section 6
contains the proofs of the theorems stated in Sect. 1.1. Section 7 presents our conclusions
and a discussion of some consequences of our results.

1.1 Previous Work and New Results

The formal mathematical framework of infinite entanglement graphs has been addressed by
Grimmett and Holroyd [10]. They show that the definition of (infinite) entangled graph is not
unique, but that there are two “extremal” definitions, roughly corresponding to “free” and
“wired” boundary conditions. (The simulations of [17] used an intermediate definition: for
configurations in a large finite box, the top and bottom of the box were “wired” but the sides
were “free”.) The two extremal definitions give rise to two (possibly equal) critical proba-
bilities for entanglement, which we call p0

e and p1
e (for free and wired boundary conditions,

respectively). The precise definitions are given in Sects. 2.2 and 2.3. From first principles it
follows that p1

e ≤ p0
e ≤ pc . The strict inequality p0

e < pc predicted by Kantor and Hassold
[17] was proven rigorously by the work of [2, 15]. For ordinary percolation we know that pc

is strictly between 0 and 1; Holroyd [14] proved the analogue for every possible definition
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of pe , by giving the explicit bound p1
e ≥ 1/15616. Thus we know

0 < p1
e ≤ p0

e < pc < 1. (1)

Häggström [12] proved that the infinite entangled component is unique above the critical
probability (for any definition of entanglement). It is not known yet whether p1

e equals p0
e .

Next, consider the set F of finite entangled subgraphs of the simple cubic lattice (the
precise definition appears in Sect. 2.2). For N ≥ 1, let eN be the number of subgraphs in F
that have exactly N edges and contain the origin. Grimmett and Holroyd [10] proved that
eN ≤ exp(bN + 3

8N logN) for some constant b, but could not determine the leading order
of the true growth rate of eN . The analogues of finite entangled subgraphs in ordinary perco-
lation are finite connected subgraphs, also called “lattice animals”. Let aN be the number of
connected subgraphs of the simple cubic lattice that have exactly N edges and contain the
origin. It is known that the number of lattice animals grows exponentially, in the sense that

λ := lim
N→∞

a
1/N

N (2)

exists and is finite. The proof of this has two parts. First, the existence of the limit follows
from a concatenation argument [19, 20]. Secondly, proof of finiteness requires an exponen-
tial upper bound—for approaches to obtaining this bound, see [19] (described in general
dimensions in Lemma 6.1 of [16]) and Lemma 1 of [18] (described in Sect. 4.2 of [9]). The
main result of this paper is the following analogous assertion for finite entangled graphs.

Theorem 1 For every N ≥ 1,

eN ≤ 4Na2N . (3)

Furthermore,

λe := lim
N→∞

e
1/N

N exists and satisfies λ < λe ≤ 4λ2, (4)

where λ is defined in (2).

To provide some insight into the subtlety of this result, Sect. 1.3 discusses a class of finite
subgraphs that seems to be similar to entangled graphs but grows faster than exponentially.

The bound of Theorem 1 translates fairly directly into the bound p0
e ≥ 1/(4λ2). Some

additional theory is required to obtain the same bound on p1
e .

Theorem 2

p0
e ≥ p1

e ≥ 1

λe

≥ 1

4λ2
.

We remark that the proof of strict positivity of p1
e in [14] works with the ‘duality’ relation-

ship of plaquette percolation, by showing that large dual surfaces must enclose the origin
when the density of plaquettes is close to 1. In contrast, our proof works with the entangled
clusters directly.

Grimmett and Holroyd [10] also considered the maximal open entangled graph contain-
ing the origin, which we shall call C(E0) (see Sect. 2 for precise definitions). In particular,
they proved that when p is sufficiently small, the probability measure Pp of bond percolation
satisfies

Pp{diam(C(E0)) > r} ≤ exp(−r/h(r))
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where diam(C(E0)) is the diameter of C(E0) and h is a function that grows proportionally to
some number of iterates of logarithm. Theorem 1 allows us to improve this to exponential
decay for small p.

Theorem 3 Fix p < 1/λe . Then Pp{diam(C(E0)) > r} decays exponentially in r . More
precisely,

lim sup
N→∞

Pp{C(E0) has at least N edges}1/N ≤ pλe. (5)

We observe that Theorem 3 also holds if we replace E0 by E1 (because below 1/λe , the com-
ponents C(E0) and C(E1) are both in F , hence C(E0) = C(E1)). We also note that Holroyd
[15] proved that if p1

e �= p0
e , then the left hand side of (5) equals 1 whenever p is between

p1
e and p0

e .
Finally we mention the following result which improves the upper bound of Theorem 1

for a special class of entangled graphs. Motivated by work in the chemical physics literature
(e.g. [4]), we define an olympic ring network to be an entangled graph in which every con-
nected component is a self-avoiding polygon (i.e., a simple closed curve in the lattice). An
example is shown in Fig. 1 below.

Theorem 4 For every N ≥ 1, let rN be the number of olympic ring networks containing the
origin and having exactly N edges. Then

lim
N→∞

r
1/N

N ≤ λ2, (6)

where λ is defined in (2).

For a different model of random olympic ring networks, see [5].
What do the bounds of Theorems 1, 2 and 4 imply numerically? Gaunt and Ruskin

[7] used exact enumeration to obtain the estimate λ ≈ 10.62, which suggests the bounds
limN→∞ e

1/N

N ≤ 451.14, p1
e ≥ 0.002216, and limN→∞ r

1/N

N ≤ 112.79. We have no reason to
think that these bounds are particularly good (note that pc is close to 0.249, according to [1]).
From the rigorous point of view, we can prove that λ ≤ 55/44 ≈ 12.21 (see Proposition 20),
which leads to the rigorous bounds

lim
N→∞

e
1/N

N ≤ 510

47
≈ 596.05 (7)

p0
e ≥ p1

e ≥ 47

510
>

1

597
≈ 0.00168 (8)

lim
N→∞

r
1/N

N ≤ 510

48
≈ 149.01 (9)

The bound (8) improves on the only previous rigorous bound, p1
e ≥ 1/15616 [14], by a

factor of about 26.

1.2 Intuition Behind Theorem 1

We now give a heuristic explanation of why the bound (3) of Theorem 1 “should” be true.
Consider an entangled subgraph G of the simple cubic lattice with N edges. (Also sup-

pose G contains the origin.) Suppose there exists a set A of k edges (not in G) such that the
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graph determined by G ∪ A is connected. Given the resulting animal G ∪ A, as well as N

and k, there are at most
(

N+k

k

)
possibilities for what the original animal G could have been,

and this number is less than 2N+k . Suppose we can show that there is a constant t such that
we can always take k ≤ tN . Then we could deduce that

eN ≤ 2N+tNaN+tN . (10)

Since we know that ak grows exponentially, this would prove an exponential bound on eN .
How can we bound k in terms of N? Let the connected components of G be g1, . . . , gr .

For each i = 1, . . . , r , consider the convex hull of gi (i.e., the smallest convex set in R3

containing the vertices of gi ). The convex hull of gi must intersect some other component gj

(if not, then we could shrink gi to a point inside its convex hull and then remove it through
the spaces in the cubic lattice, which contradicts the assumption that G is entangled). So
there is a path πi in the simple cubic lattice inside the convex hull of gi from a point of
gi to a point of G \ gi . How many edges does πi need? The diameter of the convex hull
is clearly enough, which is bounded by the number of edges in gi . But we should be able
to do better than the latter bound. If gi is a single cycle, then the diameter of gi ’s convex
hull is bounded by half the number of edges in gi . More generally, assume we can find a
cycle of gi that is “responsible for its entanglement”, in the (weak) sense that its convex hull
intersects a point of G \ gi . Under this assumption, the number of edges needed for πi is
at most half the number of edges in gi . Thus it seems reasonable that the number of edges
needed for π1, . . . , πr in total is at most N/2. (Indeed, the number N/2 is correct: see the
Remark following the proof of Proposition 14 as well as Proposition 12(a). However, there
need not be a “cycle responsible for entanglement”—e.g. the large “loop” in the top sketch
of Fig. 5 can be responsible for entanglement, but it is not a cycle.)

Let G1 be the union of G and all the πi ’s. Clearly G1 has fewer components than G,
but G1 may not be connected. For example, consider a collection of small cycles c1, . . . , cm

which are linked together cyclically (i.e., cj is linked to cj±1 for each j , and c1 is linked
to cm). If we call this configuration a “bracelet”, then suppose G consists of two bracelets
linked with one another as in Fig. 1. No cycle in one bracelet has a convex hull that contains
any point of the other bracelet. Thus G1 will have two components.

Although G1 may be disconnected, G1 must be entangled. So we repeat the above pro-
cedure on G1 (look at the convex hulls, find paths joining components, etc.), obtaining a
new entangled graph G2. The number of edges needed in all the new paths used to make
G2 from G1 can be bounded by the sum of diameters of all connected components of G1.
If each component of G1 came from a bracelet-like configuration in G, then the diameter

Fig. 1 Sketch of two bracelets
that form a single entangled
cluster
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Fig. 2 A different kind of
bracelet

of a component is at most one quarter of the number of edges of the bracelet (observe that
a typical plane slicing through a bracelet intersects the bracelet in at least two distinct cy-
cles, hence in at least four edges). Repeat this procedure to construct G3,G4, . . . until we
obtain a graph Gj that is connected. The total number of edges in Gi \Gi−1 is at most N/2i .
Therefore the number of edges added to G to obtain Gj is st most

N

2
+ N

4
+ · · · + N

2i
+ · · ·

which is N . That is, we can take t = 1 in (10).
This is the heuristic argument. In fact, this gives the correct final answer: Corollary 16

says that every entangled cluster with N edges is contained in an animal with at most 2N

edges. But the argument in the preceding paragraph is too simplistic. For example, Fig. 2
shows that a bracelet’s diameter could be close to half the number of edges rather than one
quarter. Also, when there are many connected components, it is not clear how to characterize
the levels of “bracelets”. We avoid this problem by having Proposition 15 do the bookkeep-
ing of how many edges must be added at each step. While the details of the preceding
heuristic argument are not true, the overall idea is correct in spirit, and we constructed our
proof with this argument as a guide. The fact that the heuristic argument produces the correct
answer suggests that its hypothesized configurations are a kind of worst-case situation.

1.3 Different Behaviours in Other Models

To see why a finite exponential bound (in the number of edges) on the number of entangled
clusters is not “obvious”, we first consider a set of subgraphs of the cubic lattice that we
shall call “caged clusters.” The connected components of caged clusters exhibit a kind of
geometric inseparability rather than topological inseparability. It seems reasonable to guess
that if the number of entangled clusters grows exponentially (in the number of edges) then
so should the number of caged clusters. However, we shall show now that the number of
caged clusters grows faster than exponentially. In our opinion, this observation makes the
exponential growth of the number of entangled clusters less “obvious.”

For each integer n ≥ 1, let ∂B(n) denote the subgraph of the simple cubic lattice consist-
ing of all edges and vertices that are contained in the boundary of the cube [−n,n]3.

Consider the cluster H := ∂B(1) ∪ ∂B(n) (with n > 1). This cluster is disconnected, but
if we view the two components of H as rigid subsets of R3 that can be translated and rotated
but not stretched, shrunk, or bent (in particular, angles between edges may not change), then
∂B(n) acts like a cage that keeps the small cube “inside”: any continuous rigid motion of
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Fig. 3 Sketch of a “caged
cluster.” Many edges in the faces
of the cubes are not shown

∂B(1) cannot leave [−n,n]3 without intersecting ∂B(n). In this sense, we say that H is
a “caged cluster”. We shall consider caged clusters consisting of a large ∂B(n) enclosing
many disjoint translations of ∂B(1) (see Fig. 3). For large even n, partition [−n,n]3 into
Kn2 columnar rectangular blocks of dimensions 4 × 4 × 2n. Observe that ∂B(n) has 48n2

edges. We can create a caged cluster with N := 48n2 + 48(Kn2) edges by taking ∂B(n) and
one translate of ∂B(1) in the interior of each columnar block. This shows that

CCN ≥ (K2n)Kn2 = (
K3

√
N

)K4N
,

and hence that lim supN→∞ CC
1/N

N = ∞. That is, the number of caged clusters with N edges
containing the origin grows faster than exponentially in N .

We also mention two other interesting percolation-type models that, unlike entangle-
ment percolation, have critical probabilities equal to 0: bootstrap percolation [28] and a
tension model with random holes [25]. The analysis in [25] includes a process reminiscent
of our method of joining up connected clusters that are topologically linked (as outlined
in Sect. 1.2). In [25], two clusters are joined up if one cluster intersects the convex hull of
the other, and the result is that these growing clusters eventually fill up all of space. This
criterion for joining up is similar to our relation of one cluster “covering” the other (see the
end of Sect. 4). It is also similar to the criterion used in [10] that led them to their bound
eN ≤ exp(bN + 3

8 N logN). A key difference between those arguments and ours is that we
ultimately require a form of “mutual covering”, either in the form of two clusters that cover
each other, or in the form of a “directed cycle” of covering (e.g. cluster A covers cluster B,
cluster B covers cluster C, and cluster C covers cluster A). This kind of mutual covering is
not required in the model of [25], and was not used in [10]. Also, notice that in our example
of caged clusters, the large cube “covers” all of the little cubes, but nothing covers the large
cube. Thus it appears that mutual covering should be an essential part of the argument that
λe is finite.

2 Definitions and Notation

2.1 Geometric and Graph-Theoretical Terminology

For a set S, |S| denotes the cardinality of S. For x ∈ R3, write x = (x1, x2, x3).
A box is a subset of R3 of the form [a1, b1] × [a2, b2] × [a3, b3] (where −∞ < ai ≤

bi < +∞, i = 1,2,3). The diameter of the box β = [a1, b1] × [a2, b2] × [a3, b3] equals



8 M. Atapour, N. Madras

∑3
i=1 |bi − ai | and is written diam(β). For bounded S ⊂ R3, let Box(S) be the smallest box

that contains S.
A lattice box is a box [a1, b1]× [a2, b2]× [a3, b3] in R3 such that a1, a2, a3, b1,b2, and b3

are all integers, and ai = bi for at most one i in {1,2,3}.
For a graph G, let E(G) be the set of edges of G, and let V (G) be the set of vertices

of G. Two or more edges e1, . . . , ek are called multiple edges if they all have the same two
endpoints.

We shall write Z3
G to denote the simple cubic lattice, i.e. the infinite graph embedded in

R3 whose vertices are the points of Z3 and whose edges are all unordered pairs {x, y} of
vertices that are exactly distance 1 apart. For each edge e = {x, y} in E(Z3

G), we write 〈e〉
to denote the corresponding line segment of unit length whose endpoints are x and y. The
interior points of an edge e are the points of 〈e〉 that are not its endpoints. A cluster is any
subgraph of Z3

G. (Note that this differs from some standard usages in that we do not require
a cluster to be connected.) Each cluster A corresponds naturally to a closed subset of R3

which we shall denote R(A):

R(A) = V (A) ∪
⋃

e∈E(A)

〈e〉.

(This R(·) notation will be extended to a larger class of objects in Sect. 3.) A cluster A is
connected if and only if R(A) is a connected set (this clearly agrees with the usual definition
of connected graph). A lattice animal is a finite connected cluster.

Let β be a lattice box. If e ∈ E(Z3
G), then we shall say that β contains e if 〈e〉 ⊂ β (i.e.,

if β contains both endpoints of e). Let A be a cluster. We define A ∩ β to be the graph
consisting of those edges and vertices of A that are contained in β . We define A \ β to be
the graph consisting of those vertices and edges of A that are not contained in β , as well as
every vertex of β that is an endpoint of an edge of A \ β . (E.g., let A be the animal such
that R(A) is the line segment from (0,0,0) to (6,0,0). Then A \ [0,2]3 includes the edge
{(2,0,0), (3,0,0)} and the vertex (2,0,0), but not (0,0,0).)

For N ≥ 0, an N -step walk (or a walk of length N ) in a graph G is an alternating sequence
of vertices and edges v0, e1, v1, e2, . . . , vN−1, eN , vN in G such that the endpoints of ei are
vi−1 and vi for each i = 1, . . . ,N . We say that this is a walk from v0 to vN , and we call v0

and vN the endpoints of the walk. An N -step walk is a path if v0, v1, . . . , vN are all distinct.
For N ≥ 2, an N -step cycle is a graph consisting of the edges and vertices of an N -step walk
in which v0 = vN , the vertices v1, . . . , vN are all distinct, and the N edges are all distinct
(the condition on the edges is redundant unless N = 2). Only graphs with multiple edges
have 2-step cycles. In other references, a path is sometimes called a self-avoiding walk and
a cycle is sometimes called a self-avoiding polygon [23].

Let P be the set of all planes P in R3 of the form

P = {(x1, x2, x3) : xk = n + 1/2} where n ∈ Z and k ∈ {1,2,3} .

A P -section of a set X is a nonempty set of the form P ∩ X for some plane P in P .
If e ∈ E(Z3

G) and P ∈ P , then we shall say that P touches e (and e touches P ) if P ∩
〈e〉 �= ∅. Observe that a given edge e touches exactly one plane P in P , and that plane is
the perpendicular bisector of 〈e〉. Similarly, we say that a P -section P ∩ X touches e if
P ∩ X ∩ 〈e〉 �= ∅.

When discussing the “coverage graph” in Sect. 4, we shall need the concept of a directed
graph. A directed graph is a graph in which every edge is oriented. Thus, if � is a directed
graph, then its edge set E(�) is a set of ordered pairs

−−−→
(x, y) where x and y are vertices of �.
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In a directed graph, a directed walk (or directed path or directed cycle) v0, e1, v1, . . . , vN

must have ei = −−−−−→
(vi−1, vi). In this paper we only consider directed graphs with no multiple

edges (although both
−−−→
(x, y) and

−−−→
(y, x) may be edges of the same directed graph). Hence any

directed walk can be described by its sequence of vertices only. The outdegree of a vertex x

is the number of edges
−−−→
(x, z) in the directed graph.

2.2 Topological Concepts

We shall use topological terminology specialized for the three-dimensional context in
which we work. We follow the definitions of [10]. A ball (respectively, a sphere) is a
closed simplicial complex in R3 that is homeomorphic to {x ∈ R3 : ‖x‖2 ≤ 1} (respectively
{x ∈ R3 : ‖x‖2 = 1}) where ‖ · ‖2 is the Euclidean norm (a simplicial complex is a union of
simplices whose pairwise intersections are faces of the simplices; see e.g. [8]). The comple-
ment of a sphere has two connected components.

Let A be a closed subset of R3, and let S be a sphere. We say that S separates A if
S ∩ A = ∅ and A intersects both connected components of R3 \ S.

Let F be the set of all finite clusters F of Z3
G such that R(F ) is not separated by a

sphere. The elements of F are called entangled or unsplittable finite clusters. Let eN denote
the number of clusters in F that have exactly N edges and contain the origin. Let E0 be the
set of subgraphs G of Z3

G such that for every finite subgraph G′ of G there is an entangled
cluster F ∈ F such that R(G′) ⊂ R(F ) ⊂ R(G). Also let

E1 = {G subgraph of Z3
G : R(G) is not separated by a sphere}.

See Fig. 4, as well as Holroyd [14, Fig. 3]. Grimmett and Holroyd [10] show that E0 and E1

are extremal in the sense that any collection E of subgraphs of Z3
G that form a “measurable

entanglement system” must satisfy E0 ⊆ E ⊆ E1.
For i ∈ {0,1} and a subgraph G of Z3

G, we define an Ei -component of G to be a max-
imal member of Ei that is a subgraph of G. As noted by Grimmett and Holroyd [10], the
Ei -components of G partition G.

2.3 Percolation

We consider the bond percolation model with parameter p on the lattice Z3
G [9]. Each edge

of Z3
G is open with probability p, and it is closed otherwise. Under the product measure

Fig. 4 Two sketches of infinite
entangled graphs comprised of
infinitely many finite connected
components. (a) This graph is in
E0 and in E1. (b) This graph is in
E1 but not in E0
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Pp , all edges are independent. Let W be the random subgraph of Z3
G consisting of all open

edges (and all vertices), and let W ∗ be the connected component of W containing the origin.
Define θ(p) to be the probability (under Pp) that W ∗ is infinite. Then the standard critical
probability pc is defined to be the supremum of all p such that θ(p) = 0. It is known that
0 < pc < 1, and that Pp(|E(W ∗)| ≥ n) is an exponentially decaying function of n for each
p in (0,pc) (see [9] for proofs and more properties).

For i ∈ {0,1}, we write C(Ei ) for the Ei -component in the random graph W that contains
the origin. We write |C(Ei )| for the number of edges in C(Ei ). The critical probability for
Ei -entanglement is

pi
e := sup{p : Pp(|C(Ei )| = ∞) = 0}.

Since E0 ⊂ E1, it follows that C(E0) ⊂ C(E1) and p1
e ≤ p0

e .

3 Block-Clusters

In this section we introduce the block-cluster, a geometrical graph-like structure in which
some vertices may be replaced by boxes. The formal definition is as follows.

A block-cluster D is a triple (V ,E,B) where V = V (D) is a set of vertices of Z3
G,

E = E(D) is a set of edges of Z3
G, and B = B(D) is a set of lattice boxes in R3, such that:

(a) the lattice boxes of B are pairwise disjoint;
(b) no vertex of V is contained in a box of B;
(c) each endpoint of each edge in E either is in V or is a point of some box in B;
(d) no box of B contains an interior point of any edge of E;
(e) the sets V , E, and B are all finite, and at least one is nonempty.

Suppose that e ∈ E(D), and let v be an endpoint of e (in Z3
G). Then either v ∈ V (D) or

else v ∈ β for some box β ∈ B(D). We shall write v[D] := v in the first case and v[D] := β

in the second case. Let u be the other endpoint of e. Observe that if v[D] and u[D] are both
boxes in B(D), then the two boxes must be distinct (and hence disjoint).

If D is a block-cluster, then we can form a graph G(D) (an abstract graph, not necessarily
embedded in R3) whose edge set is E(D), whose vertex set is V (D) ∪ B(D), and such that
if the edge e ∈ E(D) has endpoints v and u in Z3

G, then the endpoints of e in G(D) are v[D]

and u[D]. (The idea here is that G(D) describes the topology of D if we shrink each box
to a point. This idea is formalized in Proposition 5 below.) It is possible for G(D) to have
multiple edges.

We now extend the notation R(·) from Sect. 2.1. If D is a block-cluster, then let R(D)

be the subset of R3 formed by the union of all boxes in B(D), all vertices in V (D), and all
segments 〈e〉 such that e is an edge in E(D). Note that R(D) is a closed, bounded, nonempty
subset of R3. Since the boxes of B must be disjoint and two- or three-dimensional, the set
R(D) determines D uniquely. Thus a block-cluster D can be represented equally well by
either the triple (V ,E,B) or by the set R(D). Observe that a lattice animal is a block-cluster
in which B is empty and R(D) is connected. If B is a set of disjoint lattice boxes, then we
shall sometimes write R(B) to denote the subset of R3 which is the union of the boxes in B

(this convention treats B as the block-cluster (∅,∅,B)).
For ε > 0 and S ⊂ R3, we define the ε-neighbourhood of S (written Nε[S]) to be the set

of all points of R3 whose distance from at least one point of S is less than ε. The following
observations are clear.
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Proposition 5 Let D be a block-cluster.

(a) G(D) is a connected graph if and only if R(D) is a connected set.
(b) Let ε ∈ (0,1/2), and assume R(D) is connected. If G(D) has no cycles, then Nε[R(D)]

is a ball and the boundary of Nε[R(D)] is a sphere.

If D = (V ,E,B) and D′ = (V ′,E′,B ′) are block-clusters, we say that D′ is a sub-block-
cluster of D if V ′ ⊂ V , E′ ⊂ E, and B ′ ⊂ B . It is important to note that B ′ and B are sets
of boxes, so when we write “B ′ ⊂ B” we mean that each box of B ′ is also a box of B .
(If B ′ ⊂ B , then no box of B ′ is a proper subset of any box of B; in particular, if B has k

boxes, then there are exactly 2k possibilities for what B ′ could be.) For two block-clusters D

and D′, note that if D′ is a sub-block-cluster of D then R(D′) ⊂ R(D), but that the converse
is false.

A block-cycle is a block-cluster D′ = (V ′,E′,B ′) such that G(D′) is a cycle. If D is
a block-cluster, then we say that D′ is a block-cycle of D if D′ is a block-cycle that is a
sub-block-cluster of D.

4 Boxing the Loops

To help characterize and localize entanglement, we define the following transformation on
block-clusters. Essentially, 	 replaces block-cycles by minimal sets of boxes that contain
them.

Algorithm: 	(D)

Let D = (V ,E,B) be a block-cluster. This algorithm defines another block-
cluster 	(D) = (V ′,E′,B ′) as follows.
1. Let C̃(D) = ⋃

C R(C), where the union is over all block-cycles C in D.
2. Let B ′ be the minimal collection of pairwise disjoint lattice boxes such that

R(B ′) contains R(B) ∪ C̃(D). (That is: if B∗ is another collection of pair-
wise disjoint lattice boxes such that R(B∗) contains R(B) ∪ C̃(D), then
R(B ′) ⊂ R(B∗).) We can construct B ′ as follows:
2.1. Initially, let B̂0 = R(B) ∪ C̃(D) and let k = 0.
2.2. Let {αj }j be the collection of connected components of B̂k , and let

B̂k+1 = {Box(αj )}j . (Note that αj cannot be contained in a line seg-
ment since it contains a lattice box or a block-cycle; hence Box(αj ) is
a lattice box.)

2.3. If the boxes in B̂k+1 are all pairwise disjoint, then let B ′ = B̂k+1 and
stop. Otherwise, increase k by one and go to Step 2.2.

3. Let V ′ be the set of vertices in V that are not contained in R(B ′). Let E′ be
the set of edges e ∈ E such that 〈e〉 is not contained in R(B ′).

Then define 	(D) to be the block-cluster (V ′,E′,B ′). See Fig. 5.

The following observations are immediate.

Proposition 6 Suppose (V ′,E′,B ′) = 	(V,E,B). Then:

(a) V ′ ⊂ V and E′ ⊂ E, while R(B ′) ⊃ R(B) and R(V ′,E′,B ′) ⊃ R(V ,E,B);
(b) R(V ′,E′,B ′) ⊂ Box(R(V ,E,B)); and
(c) C̃(V ,E,B) is nonempty if and only if B ′ �= B .
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Fig. 5 Three block-clusters D,
D′ , and D′′, related by iteration
of 	 . The top block-cluster D is
a lattice animal consisting of two
small cycles, a long walk joining
the cycles, and some short walks
that have no effect on
entanglement. Solid rectangles
denote lattice boxes. We have
D′ = 	(D), D′′ = 	(D′), and
D′′ = 	(D′′). Also, D′′ is
	∞(D), and Block(D) consists
of the black box shown in the
sketch of D′′

We would now like to iterate 	 . Given a block-cluster D, define 	(0)(D) = D, and
	(i)(D) = 	(	(i−1)(D)) for i ≥ 1. It follows from Proposition 6(a, b) that there exists a fi-
nite nonnegative integer T = T (D) such that 	(T )(D) = 	(i)(D) for all i ≥ T . Accordingly,
define

	∞(D) := 	(T )(D) and Block(D) := B(	∞(D)).

Observe that 	∞(D) is a block-cluster and Block(D) is a collection of pairwise disjoint
lattice boxes (the disjointness will be used frequently and tacitly in our proofs). In Fig. 5,
we have T = 2, D′′ = 	∞(D), and Block(D) is a single box.

The following results present various basic properties of 	 and 	∞ which will be useful
later.

Proposition 7 Let D be a block-cluster.

(a) The graph G(	∞(D)) has no cycles.
(b) 	∞(	∞(D)) = 	∞(D).
(c) For 0 < ε < 1/2, the ε-neighbourhood of each connected component of R(	∞(D)) is

homeomorphic to a ball, and has boundary that is homeomorphic to a sphere.

Proof (a) By Proposition 6(c), 	∞(D) has no block-cycles. Therefore G(	∞(D)) has no
cycles.

(b) This follows from 	(	∞(D)) = 	∞(D), which is a consequence of the definition
of T (D).

(c) This follows from part (a) and Proposition 5(b). �

Lemma 8 Assume that D = (V ,E,B) and D̂ = (V̂ , Ê, B̂) are block-clusters such that
R(D) ⊂ R(D̂). Then

(a) R(	(D)) ⊂ R(	(D̂)),
(b) R(	∞(D)) ⊂ R(	∞(D̂)), and
(c) every box of Block(D) is contained in some box of Block(D̂).

Proof Part (b) follows from repeated application of (a), and (c) is a direct consequence
of (b). To prove (a), it suffices to show that R(B) ∪ C̃(D) ⊂ R(B̂) ∪ C̃(D̂). We know
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R(B) ⊂ R(B̂) [since R(D) ⊂ R(D̂)]. Let CD be a block-cycle in D. Then R(CD) ⊂
R(D) ⊂ R(D̂), but it still remains to show that R(CD) is contained in R(B̂) ∪ C̃(D̂). If
β is a box of B(CD), then β ⊂ R(B) ⊂ R(B̂). To complete the proof, we must show

If e is an edge of E(CD), then 〈e〉 ⊂ R(B̂) ∪ C̃(D̂). (11)

So assume e ∈ E(CD) and 〈e〉 �⊂ R(B̂). Then e ∈ Ê. Let u and v be the endpoints of e in Z3
G.

Let D∗ be the sub-block-cluster of D̂ obtained by deleting e [i.e., D∗ = (V̂ , Ê \ {e}, B̂)].
Similarly, let C∗ be the sub-block-cluster of CD obtained by deleting e. Since R(C∗) is
connected and R(C∗) ⊂ R(D∗), the points u and v are in the same connected component
of R(D∗). Therefore there is a path P ∗ in G(D∗) from u[D∗] to v[D∗]. Then e ∪ P ∗ is a cycle
in G(D̂), which corresponds to a block-cycle Ĉ in D̂ containing e. Therefore 〈e〉 ⊂ C̃(D̂).
This proves (11) and the lemma. �

Corollary 9 Let D0 be a block-cluster and let CZ be a cycle of Z3
G such that R(CZ) ⊂

R(D0). Then there is a box of Block(D0) that contains all of R(CZ).

Proof Clearly 	∞(CZ) consists of a single box. So we simply apply Lemma 8(c) with
D = CZ and D̂ = D0. �

Corollary 10 Let A be a lattice animal and let β be a box of Block(A). Let W be a path in
A with both endpoints in β . Then R(W) ⊂ β .

Proof We proceed by contradiction. Assume e is an edge of W that is not contained in β . Let
W̃ be the subgraph of W containing e such that W̃ is a path having both endpoints in β but no
other points in β . Then β ∪ R(W̃ ) determines a block-cycle and β ∪ R(W̃ ) ⊂ R(	∞(A)).
Also, 	(β ∪ R(W̃ )) is a single box. Therefore, by Lemma 8(c), β ∪ R(W̃ ) lies in a box of
	∞(A), which must be β . This contradicts the assumption that e is not contained in β . �

The following lemma is key to our argument. It shows a way that the boxes of 	∞(A)

indicate where the cycle-like parts of A are.

Lemma 11 Assume A is a lattice animal. Then every P -section of every box in Block(A)

touches at least two edges of A.

Proof Let β be a box in Block(A), and let P ∈ P . Assume that P touches at most one edge
of A ∩ β . We shall derive a contradiction.

Let D = 	∞(A). Suppose P = {(x1, x2, x3) : xk = n + 1/2}. Then let

β1 = β ∩ {(x1, x2, x3) : xk ≤ n} and β2 = β ∩ {(x1, x2, x3) : xk ≥ n + 1}.
(Notice that if β is two-dimensional, then β1 or β2 could be a line segment, and hence not a
lattice box.) Define S ⊂ R3 by

S =
{

(R(D) \ β) ∪ β1 ∪ β2 if P touches no edge of A ∩ β;

(R(D) \ β) ∪ β1 ∪ β2 ∪ R(e) if P touches the edge e of A ∩ β.

Then there is a block-cluster D̃ such that R(D̃) = S. (Observe that if βi is a lattice box, then
βi ∈ B(D̃); otherwise, βi is a line segment and every edge in βi is in E(D̃).) Then we have
R(A) ⊂ S = R(D̃).
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The graph G(D̃) is obtained from G(D) by replacing one vertex (corresponding to β)
with a graph (corresponding to G(D̃ ∩ β)) that has no cycles. Since G(D) has no cycles
(by Proposition 7(a)), G(D̃) has no cycles. Hence 	∞(D̃) has no block-cycles. There-
fore 	∞(D̃) = D̃. Moreover, since R(A) ⊂ R(D̃), Lemma 8(b) implies that R(	∞(A)) ⊂
R(	∞(D̃)). This says that R(D) ⊂ R(D̃), which is false. This contradiction proves the
lemma. �

Let A1, . . . ,AM (M ≥ 1) be the connected components of a finite cluster L. If R(Aj ) ∩
R(	∞(Ai)) �= ∅ (for given i �= j ), then we say that Ai covers Aj and we write Ai ↘ Aj .
That is, Ai covers Aj if some box of Block(Ai) touches Aj . The coverage graph of L,
denoted Cover(L), is the directed graph whose vertices are 1, . . . ,M and whose edge set is

{−−→(i, j) : Ai ↘ Aj }.

Proposition 12 Let L be an entangled finite cluster (i.e., L ∈ F ), and assume that L is not
connected. Then

(a) no vertex of Cover(L) has outdegree 0, and
(b) Cover(L) contains a directed cycle (of length 2 or more).

The proof of part (b) uses the following elementary lemma about directed graphs.

Lemma 13 Let � be a finite directed graph with vertex set V . Assume no vertex of V has
outdegree 0. Then � has a directed cycle.

Proof We shall inductively define a sequence of vertices {wi} of V as follows. Let w0 ∈ V .
Since the outdegree of w0 is positive, there is a vertex w1 such that

−−−−−→
(w0,w1) is an edge

of �. Continuing in this way, suppose we have constructed a directed walk with vertices
w0,w1, . . . ,wi . Let wi+1 be a vertex such that

−−−−−−→
(wi,wi+1) is an edge of �. Since V is finite,

there must be a smallest positive integer j such that wj = wi for some i ∈ {0, . . . , j − 1}.
Then (wi, . . . ,wj ) is a directed cycle in �. �

Proof of Proposition 12 Assume vertex 1 has outdegree 0, i.e. R(	∞(A1)) ∩ Aj = ∅ for
every j ≥ 2. Thus we see that for ε ∈ (0,1/2), the boundary of the ε-neighbourhood of
R(	∞(A1)) separates A1 from

⋃M

j=2 Aj . And by Proposition 7(c), this boundary is a sphere.
This contradicts the fact that L ∈ F . This proves (a). Part (b) follows directly from part (a)
and Lemma 13. �

5 Connecting the Components

Our goal in this section is to show that one can add a controlled number of edges to any en-
tangled cluster so as to join up all of the components. We begin with an easy result (Propo-
sition 14 and its ensuing remark) that indicates the kind of thing we want to do. However,
we shall soon see that the stronger version that we need (Proposition 15) requires a much
more elaborate proof.

Proposition 14 Let A1 and A2 be two lattice animals and assume that A1 ↘ A2. Then there
is a box β1 ∈ Block(A1) and a path π in Z3

G from a vertex of A1 to a vertex of A2 such that
R(π) ⊂ β1 and |E(π)| ≤ diam(β1).
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Proof Since A1 ↘ A2, there is a block β1 of Block(A1) and a vertex x2 of A2 such that
x2 ∈ β1. Choose any vertex x1 of A1 ∩ β1, and let π be a path of shortest length in Z3

G

from x1 to x2. Then R(π) ⊂ β1. Since π was chosen to have shortest length, it follows that
|E(π)| ≤ diam(β1). �

Remark In the context of Proposition 14, the graph A1 ∪ A2 ∪ π is connected. Thus if
A1 ∪ A2 is an entangled cluster with A1 and A2 connected and disjoint, then A1 ↘ A2, so
we can join up A1 and A2 by adding at most |E(π)| edges to the cluster for some path π

with |E(π)| ≤ |E(A1)| (in fact |E(π)| ≤ |E(A1)|/2 by Lemma 11).

We now introduce some terminology that will be important in the subsequent develop-
ment.

A Green/Red graph is a graph in which each edge is coloured either Green or Red. (We
shall only use this when the graph is a cluster.) For a Green/Red graph L, let Green(L)

[respectively, Red(L)] denote the set of Green [respectively, Red] edges of L.
We say that a Green/Red animal A has the GG Property if

(GG1) every edge of 	∞(A) \ Block(A) is Green in A [i.e. E(	∞(A)) ⊂ Green(A)], and
(GG2) every P -section of every box in Block(A) touches at least two Green edges of A.

We say that a Green/Red cluster has the GG Property if every connected component of the
cluster has the GG Property.

Consider an entangled cluster L in which every edge is Green. Then Lemma 11 tells us
that L has the GG Property. The following result says that we can add new Green edges to L

to join up some components, while changing two pre-existing Green edges to Red for each
new Green edge, in such a way as to preserve the GG Property. We note that Proposition 14
is not sufficient to guarantee preservation of the (GG2) property.

Proposition 15 Suppose L is a Green/Red cluster that has the GG Property. Also suppose
that some of the connected components of L, say A1, . . . ,Aq (with q > 1) form a directed
cycle in Cover(L), i.e. Ai−1 ↘ Ai for i = 1, . . . , q (where we define A0 to be Aq ). Then
there is a Green/Red cluster L′ such that

(a) L is a subgraph of L′ (with edge colours in L′ not necessarily the same as in L);
(b) all edges of E(L′) \ E(L) are Green;
(c) Red(L) ⊂ Red(L′);
(d) |Red(L′) \ Red(L)| = 2|E(L′) \ E(L)|;
(e) A1, . . . ,Aq are all in the same connected component of L′, and each of the other con-

nected components of L′ equals a connected component of L (with the same edge
colours); and

(f) L′ has the GG Property.

It follows that Red(L′) ⊂ E(L) [by (b)], that L′ has fewer connected components than L

[by (e)], and

|Red(L)| + 2|Green(L)| = |Red(L′)| + 2|Green(L′)|. (12)

Before proving this result, we present the following corollary. It says that by repeating
the process of this Proposition, the connected components of an entangled cluster with N

edges can all be joined up by adding at most N additional edges. This leads directly to the
exponential upper bound on the number of entangled clusters (Theorem 1, which we shall
prove in Sect. 6.1).
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Corollary 16 Let L0 be an entangled cluster with N edges. Then L0 is a subgraph of a
lattice animal that has at most 2N edges.

Proof This is trivial if L0 is connected, so assume L0 is not connected. Let every edge
of L0 be coloured Green. Then Lemma 11 tells us that L0 has the GG Property. We now
inductively define a (finite) sequence of finite entangled Green/Red clusters {Li} having
the GG Property. Assume Li is a finite entangled cluster with the GG Property, and is not
connected. Then Proposition 12 shows that Cover(Li ) has a directed cycle. Let Li+1 be the
Green/Red cluster L′ obtained by applying Proposition 15 with L = Li . Then Li+1 is finite
and has the GG Property. Since Li+1 is obtained from the entangled cluster Li by adding
edges but not creating new components, Li+1 must also be entangled. Since Li+1 has fewer
connected components than Li , we eventually obtain a Green/Red cluster LI with only one
component. From Red(L0) = ∅ and (12), we see that

2N = |Red(L0)| + 2|Green(L0)| = |Red(LI )| + 2|Green(LI )| ≥ |E(LI )|,
so LI is the desired lattice animal. �

The following lemma will be used a few times in the proof of Proposition 15.

Lemma 17 Assume 2 ≤ q ≤ s. Let A1, . . . ,As be pairwise disjoint Green/Red lattice ani-
mals that each has the GG Property. Let A′ be a Green/Red animal containing every animal
Ai (the edges need not have the same colour in A′ as in ∪Ai ). Let βi be a box of Block(Ai)

for each i = 1, . . . , q , and let βi = ∅ for i = q + 1, . . . , s. Let β∪ = ⋃q

j=1 βj . Assume

(i) every edge of A′ that is not contained in β∪ is an edge of Ai for some i ≤ s, and
(ii) every edge of Ai \ βi has the same colour in A′ as it has in Ai .

Then

(a) A′ has the (GG1) property, and
(b) If P ∈ P , β0 ∈ Block(A′), P ∩ β0 �= ∅, and P ∩ β0 ∩ β∪ = ∅, then P ∩ β0 touches at

least two Green edges of A′.

Proof (a): Let e be an edge of E(	∞(A′)). In particular, 〈e〉 �⊂ R(Block(A′)), so e is not in
any of β1, . . . , βq . Therefore e must be an edge of Ai for some i ≤ s, and e must have the
same colour in A′ as in Ai . By Lemma 8(c), e cannot be in any box of Block(Ai). Therefore
e is Green in Ai [since (GG1) holds for Ai ], and hence e is Green in A′. We conclude that
(GG1) holds for A′.

(b): On the one hand, suppose P ∩ β0 touches a box β∗ of Block(Ak) for some k ≤ s.
By Lemma 8(c), β∗ ⊂ β0. Since P ∩ β0 ∩ β∪ = ∅, we know β∗ �= βk , so β∗ ∩ βk = ∅.
Therefore, by (GG2) for Ak , P ∩ β0 touches at least two Green edges of Ak ∩ β∗, hence of
(Ak \ βk) ∩ β0, hence of A′ ∩ β0.

On the other hand, suppose that for every k ≤ s, P ∩ β0 touches no box of Block(Ak).
Lemma 11 shows that P ∩ β0 touches at least two edges of A′, say f1 and f2. We know that
f1 �⊂ β∪, so f1 is in Ak for some k ≤ s. By (GG1), f1 is Green in Ak , so f1 is Green in A′.
Similarly, f2 is Green in A′. �

Proof of Proposition 15 First we show that (a)–(d) imply (12). Let R� = Red(L′)\Red(L).
Then R� ⊂ Green(L) [by (b)], and

|E(L′) \ E(L)| = 1

2
|R�| = 1

2

(|Red(L′)| − |Red(L)|) [by (d) and (c)].
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Fig. 6 Sketch of Subcase I(a).
The boxes β1 and β2 are shown
by outlined rectangles

Then Green(L′) = (E(L′) \ E(L)) ∪ (Green(L) \ R�) and

|Green(L′)| = |E(L′) \ E(L)| + |Green(L)| − |R�|,
from which we obtain (12).

For the rest of the proof, we shall consider the cases q = 2 and q > 2 separately.
Case I: q = 2. Since A1 ↘ A2 ↘ A1, there exists, for i = 1,2, a vertex xi in V (Ai) and

a box βi in Block(Ai) such that x1 ∈ β2 and x2 ∈ β1. Case I breaks into two subcases: either
x1 ∈ β1 and x2 ∈ β2 (Subcase I(a)) or not (Subcase I(b)).

Subcase I(a): x1 ∈ β1 and x2 ∈ β2: Then x1 and x2 are both in β1 ∩β2. Let π be a shortest
path in Z3

G that joins x1 to x2. Then π lies in β1 ∩ β2 (which is either a lattice box or a
line segment). (See Fig. 6.) Let e1, . . . , ew be the edges of π that are not already in L. For
each k = 1, . . . ,w, let Pk be the plane of P that touches ek (i.e., the perpendicular bisector of
〈ek〉). For i = 1,2, since ek ⊂ β1 ∩β2, we see that Pk ∩βi �= ∅; hence Pk ∩βi touches at least
two Green edges of Ai ∩ βi , say eik,R and eik,G (since Ai has the GG Property). Observe
that the edges eik,c (i = 1,2; k = 1, . . . ,w; c = R,G) are all distinct (to see this, use the
disjointness of A1 and A2 as well as the fact that the planes P1, . . . ,Pw are all distinct,
because π is a shortest path; note that each edge of Z3

G touches only one plane of P ).
Let L′ be the Green/Red cluster obtained from L by adding the Green edges e1, . . . , ew

(and their endpoints), and changing the colour of each eik,R from Green to Red. It is clear
that properties (a), (b), (c), and (e) hold for L′. For (d), observe that |E(L′) \E(L)| = w and
|Red(L′)| = |Red(L)| + 2w. It remains to show that (f) holds.

Let A′ be the component of L′ containing π . Let s be the number of components of L that
π touches. Clearly s ≥ 2, since π touches A1 and A2; let us denote the other components
(if any) that π touches by A3, . . . ,As . Then A′ is the union of A1, . . . ,As , and π . Since
the other components of L′ are unchanged from L, it suffices to show that A′ has the GG
Property. Lemma 17(a) implies that (GG1) holds for A′.

It remains to show that (GG2) holds for A′. Consider a plane P in P that intersects a box
β0 of Block(A′). We must show

(*) P ∩ β0 touches at least two Green edges of A′.

There are two possibilities to consider:

(K1): P ∩ β0 ∩ (β1 ∪ β2) = ∅;
(K2): P ∩ β0 ∩ (β1 ∪ β2) �= ∅.

In Case (K1), Lemma 17(b) shows that (*) holds for A′. So assume (K2) holds. Then β1 ∪
β2 ⊂ β0 by Lemma 8(c). If P touches ek (of π ) for some k, then ek and e1k,G are two Green
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edges of A′ ∩ β1 (hence of A′ ∩ β0) touched by P , and (*) would follow. So suppose P

touches none of the ek’s. Then the edges of L′ touched by P have the same colour as they
do in L. Choose i ∈ {1,2} such that P intersects βi . Since Ai had the GG Property, we know
that P touches at least two Green edges of Ai ∩βi . But these two edges are also Green edges
of A′ and they are both in β0. Hence (*) holds when (K2) does. We conclude that (GG2)
holds for A′ in Case (K2).

This concludes the proof of Subcase I(a).
Subcase I(b): x1 �∈ β1 or x2 �∈ β2 or both: Without loss of generality, assume x2 �∈ β2.

Since A2 is connected, there is a path W2 in A2 from x2 to a point y2 on the boundary of β2,
such that y2 is the only vertex of W2 in β2. Let π be a shortest path in Z3

G from x1 to y2.
Then π is contained in β2.

Let e1, . . . , ew be the edges of π that are not already in L. For each k = 1, . . . ,w, let Pk

be the plane of P that touches ek . Since ek ∈ β2 and A2 has the GG Property, Pk ∩β2 touches
at least two Green edges of A2 ∩ β2, say e2k,1 and e2k,2. As in Subcase I(a), these 2w edges
e2k,i are all distinct since the w planes Pk are distinct.

Let L′ be the Green/Red cluster obtained from L by adding the Green edges e1, . . . , ew

(and their endpoints), and changing the colour of each e2k,i from Green to Red. As in Sub-
case I(a), we see that properties (a) through (e) hold for L′. It remains to prove (f).

Let A′ be the component of L′ containing π (and hence A1, A2, and perhaps other com-
ponents A3, . . . ,As of L, as in Subcase I(a)). As in Subcase I(a), it suffices to show that A′
has the GG Property. Lemma 17(a) shows that Property (GG1) holds for A′. We now turn to
(GG2).

By Lemma 8(c), there is a box β ′ of Block(A′) that contains β2. We shall prove that β ′
also contains β1. This is clear if β1 ∩ β2 �= ∅, so assume β1 ∩ β2 = ∅. In particular, x1 �∈ β1.
Let W1 be a path in A1 from x1 to a point of β1. For i = 1,2, let W̃i be a sub-path of Wi

having one endpoint in β1, having the other endpoint in β2, and having no other vertices in
β1 ∪ β2. Also, for j = 1,2, there exist paths π [j ] in Z3

G ∩ βj from W̃1 ∩ βj to W̃2 ∩ βj . Let
CZ = W̃1 ∪ π[1] ∪ W̃2 ∪ π [2]. Then CZ is a cycle in Z3

G such that

R(CZ) ⊂ 	∞(A1) ∪ 	∞(A2) ⊂ 	(∞)(A′) (by Lemma 8(c)).

By Corollary 9, R(CZ) is contained in a box β ′′ of Block(A′). But R(CZ) ∩ β ′ �= ∅, so
β ′′ = β ′. We conclude that β1 ⊂ β ′.

As in Subcase I(a), consider a plane P in P that intersects a box β0 of Block(A′). We
again consider the two possibilities (K1) and (K2) and try to show that (*) holds. Note that
the colours outside β2 are the same in L′ as in L. If (K2) holds, then β0 = β ′. The arguments
for (K1) and (K2) from I(a) all hold for I(b), except for the situation in (K2) where P touches
ek for some k. To complete Subcase I(b), then, we need only to consider this situation.

Consider the section of β ′ by Pk , the plane of P that touches ek . We claim that Pk ∩ β ′
touches a Green edge of A′ ∩ β ′ besides ek . On the one hand, if Pk ∩ β1 �= ∅, then this
section must touch two Green edges of A1 ∩ β1 (neither is an e2k,i because e2k,i is in A2),
and A1 ∩ β1 ⊂ A′ ∩ β ′, which proves the claim. On the other hand, if Pk ∩ β1 = ∅, then β1

lies on one side of the plane Pk , and Pk separates β1 either from x1 or from y2 (notice that
x1 and y2 are on opposite sides of Pk , by definition of π and Pk). We consider these two
possibilities separately (see Fig. 7).

(K2i): If Pk separates β1 from x1, then there is a path W1 in A1 from x1 to the boundary
of β1. So Pk touches an edge e of W1. By Corollary 10 (with A = A′ and β = β ′),
R(W1) ⊂ β ′. In particular, e ⊂ β ′. Notice that e, like every edge of A1, has the same
colour in A′ as in A1. On the one hand, if 〈e〉 �⊂ R(Block(A1)), then e is Green in
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Fig. 7 Sketch of the two
possibilities (K2i) and (K2ii) in
Subcase I(b). The boxes β1 and
β2 are shown by outlined
rectangles; they may or may not
be disjoint

L [by (GG1)] and hence also Green in L′, so the claim holds. On the other hand, if
〈e〉 ⊂ R(Block(A1)), then let βe be the box in Block(A1) containing e. By (GG2)
for A1, Pk ∩ βe touches at least two Green edges f1 and f2 of A1. We know βe ⊂ β ′

(since 〈e〉 ⊂ β ′). Therefore f1 is in A′ ∩ β ′ and is touched by Pk , which proves the
claim.

(K2ii): If Pk separates β1 from y2, then Pk touches an edge e of W2. By definition of W2,
〈e〉 �⊂ β2. By Corollary 10, R(W2) ⊂ β ′, so 〈e〉 ⊂ β ′. On the one hand, if 〈e〉 �⊂
R(Block(A2)), then e is Green in L [by (GG1)] and hence also Green in L′ [since
〈e〉 �⊂ β2], so the claim holds. On the other hand, if 〈e〉 ⊂ R(Block(A2)), then let
βe be the box in Block(A2) containing e. Then βe ∩ β2 = ∅ (since 〈e〉 �⊂ β2). By
(GG2) for A2, Pk ∩ βe touches at least two Green edges f1 and f2 of A2, and f1

and f2 are still Green in L′. We know βe ⊂ β ′ (since 〈e〉 ⊂ β ′). Therefore f1 is in
Green(A′) ∩ β ′ and is touched by Pk , which proves the claim.

The claim has thus been shown to hold in all possible situations. This concludes the proof
of Subcase I(b), and hence of Case I.

Case II: q > 2. Recall A1 ↘ A2 ↘ · · · ↘ Aq ↘ A1. Hence for each i = 1, . . . , q , there
exists a box βi in Block(Ai) and a vertex xi of Ai such that xi ∈ βi−1 (we write β0 = βq ,
etc.).

For each i = 1, . . . , q , let yi be a vertex of Ai ∩ βi and let Wi be a path in Ai from xi to
yi such that the following hold:

• If xi ∈ βi , then yi = xi and Wi is the trivial path consisting of the single vertex xi ;
• If xi �∈ βi , then yi is a point on the boundary of βi , and Wi contains no point of βi be-

sides yi .

Next, let πi be a shortest path in Z3
G from yi to xi+1 (See Fig. 8.) Then πi is contained in βi

(since yi, xi+1 ∈ βi ). For each i = 1, . . . , q and each edge e in πi , let P [e] be the plane in P
that touches e. Since Ai has the GG Property, we can specify two Green edges fi,1[e] and
fi,2[e] of Ai that touch βi ∩ P [e]. Observe that all of these f·,·[·] edges are distinct.
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Fig. 8 Sketch of Case II

Let � be the sequence of edges and vertices in W1,π1,W2,π2, . . . ,Wq,πq . Then � is a
walk in Z3

G from x1 to x1, containing x1, y1, x2, y2, . . . , xq ,yq ,x1 in this order. (This walk
will be contained in L′, which we define next.)

We define the new Green/Red cluster L′ by the following algorithm:

1. Let L[0] = L and i = 1.
2. Let w(i) be the number of edges of πi that are not in L[i − 1]. Call these edges ei,k

(k = 1, . . . ,w(i)).
3. Define the Green/Red cluster L[i] to be the union of L[i − 1] and the edges ei,k

(k = 1, . . . ,w(i)), with every ei,k coloured Green, and with the edges fi,m[ei,k] (k =
1, . . . ,w(i), m = 1,2) changed from Green to Red.

4. If i < q , then increase i by one and go to Step 2. Otherwise, set L′ to be L[q], and stop.

It is clear that properties (a) through (e) hold for L′, so we only need to prove (f). Let A′
be the component of L′ containing π1 (and hence πi and Ai for i = 1, . . . , q). As in Subcase
I(a), it suffices to show that A′ has the GG Property. Lemma 17(a) shows that (GG1) holds
for A′, so it remains to show that (GG2) holds for A′.

Consider a plane P in P that intersects a box β0 of Block(A′). There are exactly two
possibilities to consider (by Lemma 8(c) and the disjointness of boxes in Block(A′)): either

(KK1): (P ∩ β0) ∩ (
⋃q

j=1 βj ) = ∅, or
(KK2): For some i ∈ {1, . . . , q}, βi ⊂ β0 and P ∩ βi �= ∅.

If (KK1) holds, then Lemma 17(b) tells us that P ∩ β0 touches at least two Green edges of
A′. So assume (KK2) holds for i. If P touches none of the edges ei,k (1 ≤ k ≤ w(i)) from
L[i] \ L[i − 1] of the above algorithm, then the situation is the same as in Case I [that is:
since (GG2) holds for Ai , we know that P ∩ βi touches at least two Green edges of Ai , and
these edges do not become Red in A′, so we are done]. So suppose that P touches one of
the edges ei,k (1 ≤ k ≤ w(i)). Then ei,k is Green in A′, so to verify (GG2), we need to show

(**) There exists an edge f in Green(A′) \ {ei,k} that touches P ∩ β0.

We shall consider two subcases, according as to whether or not ei,k occurs more than once
in the walk �.

First suppose that ei,k occurs more than once in �. The edge ei,k is not in L, so it cannot
be in

⋃q

j=1 Wj , and so it must be in πj for some j �= i. Then 〈ei,k〉 ⊂ βj , so βi ∩ βj �= ∅.
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Therefore βj ⊂ β0. Also, P ∩ βj �= ∅ (since P ∩ βj touches ei,k). Let f = fj,1[ei,k]. Then
f is a Green edge of Aj that touches P ∩ βj , and hence touches P ∩ β0. Since the edge ei,k

is not in L[i − 1] (by Step 2 of the algorithm), we conclude that j > i and ei,k ∈ E(L[i]) ⊂
E(L[j − 1]). Thus ei,k is not in the set {ej,m : 1 ≤ m ≤ w(j)}. Therefore P ∩ 〈ej,m〉 = ∅ for
all m = 1, . . . ,w(j), and so f did not turn Red when the algorithm defined L[j ]. Thus we
conclude that (**) holds when ei,k occurs more than once in �.

Now suppose that ei,k occurs only once in �. Then there is a cycle Ce in � that contains
ei,k . Therefore there exists an edge ẽ of Ce \ ei,k that touches P . Since ei,k ⊂ βi ⊂ β0, Corol-
lary 10 (with A = A′, β = β0, and W = Ce \ ei,k) implies that R(Ce) ⊂ β0. In particular,
〈ẽ〉 ⊂ β0. We consider two subcases: either

(i) ẽ is in some Wj , or
(ii) ẽ is in some πj (j �= i).

(i): By definition of Wj , 〈ẽ〉 �⊂ βj . Suppose first that 〈ẽ〉 �⊂ R(Block(Aj )). Then ẽ ∈
Green(Aj ) [by (GG1) for Aj ]. Since 〈ẽ〉 �⊂ βj , we see that ẽ has the same colour in L′ as
in L. Therefore (**) holds with f = ẽ if 〈ẽ〉 �⊂ R(Block(Aj )). So suppose now that ẽ is
contained in a box β̃ of Block(Aj ). By (GG2) for Aj , there is an edge f of Green(Aj )

touching P ∩ β̃ . Since 〈ẽ〉 �⊂ βj , we see that β̃ ∩ βj = ∅, so f has the same colour in A′ as
in L. Finally, β̃ ⊂ β0 [because 〈ẽ〉 ⊂ β0], so f touches P ∩ β0. Therefore we conclude that
(**) holds in subcase (i).

(ii): First, suppose that ẽ equals ej,m for some m (1 ≤ m ≤ w(j)). Then ẽ is Green in L′
and (**) holds with f = ẽ. Next, suppose that there is no ej,m that equals ẽ. Let f = fj,1[ẽ].
Then f ⊂ βj ⊂ β0 [since 〈ẽ〉 ⊂ βj and 〈ẽ〉 ⊂ β0]. Therefore P ∩ β0 touches f . The edge f

is Green in Aj , and it is not changed to Red when the algorithm defined L[j ] [because ẽ is
not one of the ej,m’s]. Therefore (**) holds in subcase (ii).

This completes the proof that (GG2) holds when (KK2) holds. It also completes the proof
of Case II, and the Proposition. �

6 Proofs of the Main Theorems

6.1 Exponential Growth

We begin by introducing the concatenation of two clusters, and explain how it implies the
existence (but not necessarily finiteness) of the limit λe := limN→∞ e

1/N

N . The argument is
essentially the same as the standard argument for λ := limN→∞ a

1/N

N [19, 20].

Definition 18 (a) For two distinct points x = (x1, x2, x3) and y = (y1, y2, y3) of R3, we say
that x is lexicographically larger than y if xI > yI where I = min{i : xi �= yi}.

(b) Let H be a cluster and let v ∈ Z3. Then H + v is the cluster obtained from translating
every vertex and edge by the vector v.

(c) Let H1 and H2 be finite clusters. The concatenation of H1 with H2 is the graph
H1 ◦ H2 defined as follows. Let x be the lexicographically largest vertex of H1, and let y be
the lexicographically smallest vertex of H2. Then H1 ◦ H2 := H1 ∪ (H2 + x − y).

Observe that in part (c), H1 ∩ (H2 + x − y) is the one-vertex graph x. Also, if H1 has n1

edges and H2 has n2 edges, then H1 ◦ H2 has n1 + n2 edges. Finally, if H1 and H2 are both
connected (respectively, entangled) clusters, then H1 ◦ H2 is also connected (respectively,
entangled).
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The following lemma, about “supermultiplicative” sequences, is equivalent to the well-
known lemma about “subadditive” sequences (see for example Lemma 1.2.2 of [23]).

Lemma 19 Let u1, u2, . . . be a sequence of positive real numbers such that

uiuj ≤ ui+j for all i, j ≥ 1.

Let L = supn≥1 u
1/n
n (possibly equal to +∞). Then limn→∞ u

1/n
n exists and equals L.

We are now able to prove Theorem 1.

Proof of Theorem 1: First we prove that the limit λe [defined in (4)] exists. For each positive
integer n, let ENTn be the collection of entangled clusters containing the origin and having
exactly n edges. Fix positive integers m and n. Consider the map χ : ENTm × ENTn →
ENTm+n defined by χ(H1,H2) = H1 ◦ H2. We claim that H is at most 2n-to-one. To see
this, suppose H = χ(H ′

1,H
′
2). Let v(1), v(2), . . . , v(k) be the vertices of H in lexicographic

order, and for 1 ≤ i ≤ j ≤ k let H [i; j ] be the subgraph of H induced by the vertices
{v(i), . . . , v(j)}. Then it is not hard to see that there is a unique  such that H [1, ] has m

edges and H [, k] has n edges; indeed, H [1, ] = H ′
1 and H [, k] is a translation of H ′

2.
Then H ′

2 must equal H [, k] − v for some vertex v of H [, k]. Since the number of vertices
of v is at most 2n, this proves the claim.

The claim of the preceding paragraph implies that for all M,N ≥ 1, we have eM+N ≥
eMeN/(2 min{M,N}) (take n = min{M,N} and m = max{M,N}). Hence

eN+M

N + M
≥ eMeN

4MN
for all M,N ≥ 1.

The existence of limN→∞ e
1/N

N (perhaps +∞) now follows from Lemma 19 with ui =
ei/(4i).

Corollary 16 says that every entangled cluster L with |E(L)| = N is contained in a
lattice animal A having at most 2N edges. By attaching an arbitrary connected set of edges
to A if necessary, we can assume that A has exactly 2N edges. Observe that the same A

can arise from many different clusters. Given A, the number of possible choices of L that
could produce A is at most (2N

N ), which is less than 4N . The bound (3) follows, as does the
inequality λe ≤ 4λ2.

Since every lattice animal is an entangled cluster, it is obvious that λ ≤ λe . It remains
to prove that this inequality is strict. This is a consequence of the pattern Theorem 2.1 of
[22]. In the terminology of that paper, a “cluster of size n” is our entangled cluster with n

edges, and the weight of every cluster is 1. Theorem 2.1 of [22] requires Cluster Axioms
(CA1), (CA2), and (CA4); the first two are obvious, and (CA4) may be checked as in Propo-
sition 3.1 of that paper. We use the following pattern P = (P1,P2) in Theorem 2.1 of [22]:
the “occupied” set P1 consists of CA ∪ CB , where CA is the 8-step cycle that forms the
boundary of the square [−1,1] × [−1,1] × {0}, and CB is any cycle that contains the origin
and is disjoint from CA (hence P1 is entangled); and the “vacant” set P2 is the set of all
edges of Z3

G that have exactly one endpoint in CA. Thus any cluster containing a translate of
P must have at least two connected components, with (at least) one being a translate of CA.
Since lattice animals are connected, they contain no translates of P ; therefore Theorem 2.1
of [22] says that lattice animals form an exponentially small subset of entangled clusters
(with respect to number of edges)—i.e., λ is strictly smaller that λe . �
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The proof of Theorem 4, for olympic ring networks, is generally like the proof for entan-
gled clusters in Theorem 1.

Proof of Theorem 4: The existence of the limit may be shown as in the proof for entangled
clusters (Theorem 1), except we need a different form of concatenation to ensure that all
components remain cycles. The procedure for concatenating cycles (self-avoiding polygons)
is due to [13] and is described in Theorem 3.2.3 of [23]. The application to our case is
straightforward, and we omit the details.

We now turn to the bound on the limit. Let L be an olympic ring network containing
the origin and having N edges. Let A be an animal containing L that has as few edges as
possible. By Corollary 16, A has at most 2N edges. By minimality of A, the only cycles in
A are precisely the cycles of L. Clearly we can add edges to A so as to produce an animal
A′ with exactly 2N edges and no new cycles. (E.g. let B be an animal with no cycles and
2N − |E(A)| edges, and let A′ = A ◦ B .) Then A′ contains a unique olympic ring network
with N edges (namely L). The result follows since the number of possible animals A′ is at
most a2N . �

Finally we prove the estimate on the number of lattice animals used to obtain the rigorous
numerical bounds (7)–(9).

Proposition 20 The limit λ := limn→∞ a
1/n
n satisfies λ ≤ 55/44.

Proof We use the method of [18, Lemma 1]. For a lattice animal A, let b(A) be the number
of edges of Z3

G \ A that have at least one endpoint in A (we call these the boundary edges
of A). Consider bond percolation with parameter p, and let W ∗ be the connected cluster
containing the origin. Then for every positive integer n,

1 ≥ Pp{|E(W ∗)| = n} =
∑

A

pn(1 − p)b(A) (13)

where the sum is over all lattice animals A having n edges and containing the origin.
We claim that b(A) ≤ 4n + 6 for any lattice animal A in Z3

G with n edges. To prove
this, let A be an animal with n edges, and let v be the number of vertices in A. Since A is
connected, we know n ≥ v − 1 (since A contains a spanning tree, which has v − 1 edges).
Next, consider the list of all pairs (ν, ε) where ν is a vertex of A and ε is an edge of Z3

G that
has ν as an endpoint. On the one hand, since each ν is an endpoint of exactly 6 edges, the
list must have exactly 6v pairs. On the other hand, each edge of A appears twice in the list,
and each boundary edge of A appears at least once in the list. Therefore 6v ≥ 2n + b(A).
Combining this with n + 1 ≥ v shows that 6n + 6 ≥ 2n + b(A), and the claim follows.

Applying the claim of the preceding paragraph to (13), we obtain 1 ≥ pn(1 − p)4n+6an.
Take nth roots of both sides and let n → ∞; we obtain 1 ≥ p(1−p)4λ, or λ ≤ p−1(1−p)−4.
This bound is optimized by setting p = 1/5, and this proves the proposition. �

6.2 Entanglement Percolation

The first result in this section proves Theorem 3 and is also a significant step towards the
proof of Theorem 2.
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Theorem 21 For all n ≥ 1 and all p ∈ (0,1),

Pp{|C(E0)| ≥ n} ≤
∞∑

N=n

eNpN. (14)

For p < 1/λe, the probability Pp{|C(E0)| ≥ n} decays exponentially in n (indeed, (5) holds)
and Pp{|C(E0)| = ∞} = 0. Hence p0

e ≥ 1/λe .

Proof Fix n and let C = C(E0). If |C| is finite, then C ∈ F . If |C| is infinite, then, by
definition of E0, there is a finite subgraph L of C such that 0 ∈ V (L), L ∈ F , and |L| ≥ n.
Since C is open, so is L. Therefore,

{|C(E0)| ≥ n} ⊂
⋃

L∈F ,0∈V (L),|L|≥n

{L is open}.

This directly implies (14). The rest of the theorem follows from (14) and the existence of
the limit λe from Theorem 1. �

Theorem 2 is a consequence of the following corollary and (4).

Corollary 22 p1
e ≥ 1/λe .

Proof Assume p1
e < 1/λe . Choose p such that p1

e < p < 1/λe. Then p1
e < p < p0

e by
Theorem 21. By Theorem 2 of [15], there is a finite number β such that Pp{|C(E0)| ≥
n} ≥ exp(−βn2/3). But this contradicts the exponential decay proven in Theorem 21 for
p < 1/λe . �

Remark It is possible to prove Theorem 2 using the combinatorial methods of this paper,
without appealing to [15]. The details require a few pages to explain, so we have not included
them here.

7 Discussion

The main contribution of this paper is a rigorous proof that the number of entangled clusters
grows at most exponentially in the number of edges. The existence of the growth constant
λe then follows by relatively standard methods. We also obtain the explicit bound λe ≤ 4λ2,
where λ is the growth constant for lattice animals (counted by edges), although we do not
believe this to be a particularly good bound. We also show that the critical probability for
entanglement percolation is at least 1/λe; indeed, if p < 1/λe , then the distribution of the
size of an entangled cluster has exponentially decaying tails.

Once we know that λe is finite, several methods for studying general lattice animals can
be applied to entangled clusters. Here are some examples. As we observed in the proof of
Theorem 1 (in Sect. 6.1), the pattern theory developed in [22] can be applied to entangled
clusters. In particular, one can apply Theorem 2.2 of [22] to prove the following strengthen-
ing of our Theorem 1:

lim
N→∞

eN+1

eN

= λe. (15)
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In addition, the Pattern Theorem 2.1 of [22] implies that most large entangled clusters con-
sist of many connected components. Theorem 1.1 of [21] extends directly to entangled clus-
ters, proving that there exists a constant K such that eN ≤ KN1/3λN

e for all N ≥ 1 (which
improves upon the bound eN ≤ KNλN

e that follows from the supermultiplicative property).
In a different direction, establishing the finiteness of λe is a first step towards a statistical
mechanical analysis of ensembles of entangled clusters with specified energy functions (e.g.
monomer-monomer attraction, under the formalism developed in [24]).

While writing this article, we learned that Ádám Timár had independently proven the
finiteness of λe. However he has not yet completed the manuscript, and we have no further
information about his proof. Also, after this article was accepted for publication, we learned
that Grimmett and Holroyd [11] have a new improved lower bound for pe (however, their
method does not prove that λe is finite).

Acknowledgements N.M. is grateful to Geoffrey Grimmett and Alexander Holroyd for discussions and
encouragement. We thank the referees for helpful comments. The research of N.M. is supported in part by
a Discovery Grant from NSERC of Canada. N.M. would like to thank the Fields Institute for its hospitality,
both when he first learned about the problem from Geoffrey Grimmett in 1998, and when this work was being
completed in 2008–09.

References

1. Adler, J., Aharony, A., Blumenfeld, R., Harris, A.B.: Series study of percolation moments in general
dimension. Phys. Rev. B 41, 9183–9206 (1990)

2. Aizenman, M., Grimmett, G.: Strict monotonicity for critical points in percolation and ferromagnetic
models. J. Stat. Phys. 63, 817–835 (1991)

3. Boyd, R.H., Phillips, P.J.: The Science of Polymer Molecules. Cambridge University Press, Cambridge
(1993)

4. de Gennes, P.-G.: Scaling Concepts in Polymer Physics. Cornell University Press, Ithaca (1979)
5. Diao, Y., Janse van Rensburg, E.J.: Percolation of linked circles. In: Whittington, S.G., Sumners, D.W.,

Lodge, T. (eds.) Topology and Geometry in Polymer Science, pp. 79–88. Springer, New York (1998)
6. Edwards, S.F., Vilgis, T.A.: The tube model theory of rubber elasticity. Rep. Prog. Phys. 51, 243–297

(1988)
7. Gaunt, D.S., Ruskin, H.: Bond percolation in d dimensions. J. Phys. A, Math. Gen. 11, 1369–1380

(1978)
8. Giblin, P.J.: Graphs, Surfaces and Homology, 2nd edn. Chapman and Hall, London (1977)
9. Grimmett, G.: Percolation, 2nd edn. Springer, Berlin (1999)

10. Grimmett, G.R., Holroyd, A.E.: Entanglement in percolation. Proc. Lond. Math. Soc. 81, 485–512
(2000)

11. Grimmett, G.R., Holroyd, A.E.: Plaquettes, spheres, and entanglement. Preprint (2010)
12. Häggström, O.: Uniqueness of the infinite entangled component in three-dimensional bond percolation.

Ann. Probab. 29, 127–136 (2001)
13. Hammersley, J.M.: The number of polygons on a lattice. Proc. Camb. Philos. Soc. 57, 516–523 (1961)
14. Holroyd, A.E.: Existence of a phase transition for entanglement percolation. Proc. Camb. Philos. Soc.

129, 231–251 (2000)
15. Holroyd, A.E.: Inequalities in entanglement percolation. J. Stat. Phys. 109, 317–323 (2002)
16. Janse van Rensburg, E.J.: The Statistical Mechanics of Interacting Walks, Polygons, Animals and Vesi-

cles. Oxford University Press, Oxford (2000)
17. Kantor, Y., Hassold, G.N.: Topological entanglements in the percolation problem. Phys. Rev. Lett. 60,

1457–1460 (1988)
18. Kesten, H.: Analyticity properties and power law estimates of functions in percolation. J. Stat. Phys. 25,

717–756 (1981)
19. Klarner, D.A.: Cell growth problems. Can. J. Math. 19, 851–863 (1967)
20. Klein, D.J.: Rigorous results for branched polymers with excluded volume. J. Chem. Phys. 75, 5186–

5189 (1981)
21. Madras, N.: A rigorous bound on the critical exponent for the number of lattice trees, animals, and

polygons. J. Stat. Phys. 78, 681–699 (1995)



26 M. Atapour, N. Madras

22. Madras, N.: A pattern theorem for lattice clusters. Ann. Comb. 3, 357–384 (1999)
23. Madras, N., Slade, G.: The Self-Avoiding Walk. Birkhäuser, Boston (1993)
24. Madras, N., Soteros, C.E., Whittington, S.G., Martin, J.L., Sykes, M.F., Flesia, S., Gaunt, D.S.: The free

energy of a collapsing branched polymer. J. Phys. A, Math. Gen. 23, 5327–5350 (1990)
25. Menshikov, M.V., Rybnikov, K.A., Volkov, S.E.: The loss of tension in an infinite membrane with holes

distributed according to a Poisson law. Adv. Appl. Probab. 34, 292–312 (2002)
26. Otto, M., Vilgis, T.A.: Topological interactions in multiply linked DNA rings. Phys. Rev. Lett. 80, 881–

884 (1998)
27. Sauvage, J.-P., Dietrich-Buchecker, C. (eds.): Molecular Catenanes, Rotaxanes and Knots: A Journey

Through the World of Molecular Topology. Wiley-VCH, Weinheim (1999)
28. Schonmann, R.H.: On the behavior of some cellular automata related to bootstrap percolation. Ann.

Probab. 20, 174–193 (1992)
29. Vilgis, T.A., Otto, M.: Elasticity of entangled polymer loops: Olympic gels. Phys. Rev. E 56, R1314–

R1317 (1997)
30. Wolovsky, R.: Interlocked ring systems obtained by the metathesis reaction of cyclododecene. J. Am.

Chem. Soc. 92, 2132–2133 (1970)


	On the Number of Entangled Clusters
	Abstract
	Introduction
	Previous Work and New Results
	Intuition Behind Theorem 1
	Different Behaviours in Other Models

	Definitions and Notation
	Geometric and Graph-Theoretical Terminology
	Topological Concepts
	Percolation

	Block-Clusters
	Boxing the Loops
	Connecting the Components
	Proofs of the Main Theorems
	Exponential Growth
	Entanglement Percolation

	Discussion
	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


